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Digital Signal Processing in the Radio

Science Stability Analyzer
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The Telecommunications Division has built a stability analyzer for testing Deep
Space Network installations during flight radio science experiments. The low-

frequency part of the analyzer operates by digitizing sine wave signals with band-

widths between 80 Hz and 45 kHz. Processed outputs include spectra of signal,

phase, amplitude, and differential phase; time series of the same quantities; and

Allan deviation of phase and differential phase. This article documents the digital
signal-processing methods programmed into the analyzer.

I. Introduction

The recently developed radio science stability analyzer (RSA) is an instrument for real-time testing

and certification of Deep Space Network (DSN) equipment to be used during gravity wave and planetary
occultation experiments [1]. Two sets of equipment can be tested: (1) the radio science open-loop receiver

and (2) the 100-MHz frequency standards and distribution network of the DSN frequency and timing
system (FTS). Signals from either of these two sources are downconverted to low-frequency band-limited

sine wave signals. The last stage of the open-loop receiver, called radio science intermediate frequency
to video (RIV), produces sine wave signals with frequencies and bandwidths ranging from 150 Hz in

an 82-Hz band to 275 kHz in a 45-kHz band; these depend on the choice of RIV filter. RIV signals
are processed directly by the low-frequency RSA circuitry. Pairs of 100-MHz FTS signals are processed
in a portion of the RSA called the 100-MHz interface assembly (100 MHz IA), which resides near the

frequency standards. The 100 MHz IA mixes the two signals at 10 GHz and downconverts the mixer

output to a 100-kHz sine wave signal in a 30-kHz bandwidth, which is sent over a fiber-optic cable to the
low-frequency RSA circuitry.

The low-frequency circuitry has two methods for converting a band-limited sine wave signal to digital
information. First, the signal can be sampled with a 16-bit analog-to-digital (A-D) converter clocked

by a synthesizer. In this mode, two signal channels can be accommodated with the aim of extracting
their differential phase. The maximum total data rate is about 230 kilosamples per second. Second, if

the carrier frequency is known within approximately 0.1 Hz, it can be mixed with the output of another

synthesizer set to this frequency minus 1 Hz. The 1-Hz mixer output is filtered and hard limited by a

zero-crossing detector, and the up-crossing times of the resulting sequence of pulses are captured by a
time-interval counter according to the "picket fence" method [4].

The principal aim of processing the A-D data is to reduce their bandwidth by a user-selected factor,

and to extract the amplitude and phase modulations that constitute the sidebands of the sine wave signal.
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The phase of two channels can be combined into differential phase. Three output types can be generated:

spectrum of the signal and its modulations, time series of the modulations, and Allan deviation of phase.
As described below, the digital signal processing operates in three alternate modes, called full band,

medium band, and narrow band. The choice among these depends on the desired bandwidth reduction
factor. The 1-Hz zero-crossing data are processed in the same way as sequences of phase residuals

produced by narrow-band processing.

The digital signal processing (DSP) methods are designed to take advantage of the architecture of

a floating-point vector processor based on the 40-MHz Intel I860. Most of the heavy lifting is done by

manufacturer-supplied vector library routines, which include fast Fourier transform (FFT) and finite im-

pulse response (FIR) filtering routines. Throughputs of approximately 25 million floating-point operations

per second were achieved.

The remainder of this article explains the DSP methods in some detail.

II. Signal Properties

A. Radio Frequencies

In any test setup, there are two radio frequencies of interest. Let fmix be the frequency at which the

primary comparative mixing takes place, and let fref be the reference frequency for phase noise and Allan
deviation. For a RIV test, fmix = fref = 2295 MHz (S-band) or 8415 MHz (X-band). For an FTS test,

fmi_ = 9.9 GHz, fref -- 100 MHz. This is because the phase of the 100-kHz output of the 100 MHz IA is

approximately 99 times the difference between the phases of the two 100-MHz inputs. Phase results are

scaled by fref/fmix"

B. Analog Sine Wave Signal

The downconverted signal is assumed to lie in an analog frequency band with the center at fofst and

width Wvid < fofst, which are parameters of the RIV filter or the 100-MHz IA. The frequency fofst can

be positive or negative; see the discussion of polarity below. Somewhere in this band is the carrier.
Except in full-band processing, it is assumed that the signal consists of a carrier with weak sidebands;

the total carrier-to-noise ratio should be at least about 30 dB. (This instrument is a stability analyzer,

not a receiver.)

C. Digitized Sine Wave Signal

The analog signal is sampled by a 16-bit A-D converter at the sample rate fs, which has to be chosen

so that the analog frequency band is aliased into the Nyquist band (0, fs/2) or (-fs/2, 0). In this way,

both sidebands of the carrier are preserved. Each RIV filter is designed for a certain f_. In any case, an

acceptable f_ can be obtained from the formulas

(Ifof,tl) 4 Ifof,tlm=int\ -  id 0.5 , fs-- 2m+l

where int (x) is the integer part of x. This choice of f8 centers the aliased signal band in the Nyquist
band. If the actual carrier frequency is close to fofst, however, then distortion in the analog signal or A-D

converter may cause spurious harmonics to appear near the carrier. To push the images of the lowest

harmonics away from the carrier, one can offset the sample rate slightly, according to the formulas

a=0.944272, m=int a\_vid 0.5 , fs= 2m+a
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The number a is related to the golden ratio (x/'5- 1)/2.

D. Polarity

In the radio science receiver, the 2.3-GHz or 8.4-GHz signal is downconverted and filtered three times

until the carrier is at 10 MHz +fofst, where fofst can be positive or negative. At this point, the spectrum

or phase polarity of the signal is positive, i.e., the same as the radio frequency (RF) signal. The fourth

downconversion by the 10-MHz local oscillator and subsequent filtering, therefore, yield a signal whose
polarity equals the sign of fofst. Moreover, the sampling can flip the polarity again. To make better sense

of this, it is good to think about the two-sided representation of the signal. One side of the signal has
the right polarity (positive), and the other side has the wrong polarity. If we let

nbase =nint (_sst) , Spo I = sign (fofst -- nbasefs)

where nint (x) is the nearest integer to x, then 8po I is the polarity of the digitized signal, the side of

the analog signal with the right polarity lies between nbasefs and (nbase -b Spol/2) fs, and the side of the

digitized signal with the right polarity lies between 0 and Spoils�2. The user has the responsibility of
entering fofst with the correct sign.

III. Full-Band Processing

This mode allows the user to see a snapshot of the signal in the time and frequency domains before

proceeding to a closer view. The user selects an FFT size N (2048 or 4096). A frame of A-D data
x[0],.--, x[N- 1] is collected. These can be plotted against elapsed time in the frame, after scaling them

back to volts at the A-D input (10 V = 32,768). A spectral estimate of the frame is computed by scaling
the frame so that _ x[n] 2 = 1 and calculating

_1 (-i21rnk/N) 2
2 x In] u0 In; N, 5] exp

s [k} = S-7 n=0 k = O,...,N/2 (1)

where u0 In; N, 5] is the 0th-order, N-point "trig prolate" data taper [5] with bandwidth parameter w = 5

(Appendix B), scaled so that _ u0[n] 2 = N. The sidelobes of this taper (D05 in Fig. 1) are low enough

so that no leakage from the carrier should be visible in the sidebands. The array 101og 10Sx[k] (labeled
dBc/Hz) is plotted against the frequency array

f[k] = fs (nbase + Spolk/N) , k = 0,..., N/2

which shows the side of the signal with the correct polarity. The user chooses how many of these frame

spectra are averaged into a run spectrum. The frames do not have to be adjacent; it is all right to lose
data while processing the previous frame.

The resolution bandwidth of the spectral estimate, given by

fsN
Wnb--

u0[n])2

273



0 I

m

-IOO

- 120

-140

\ "

\ i:..

I
0 2 4 6 8

FFT BIN

Fig. 1. Spectral windows: full band 005,
medium band L_I04,and narrow band P-4.

has two purposes: (1) It gives the user a rough idea of the resolution of the spectral plot, and (2) it allows
the user to estimate the power of a bright line (narrower than W,b) in dBc by adding 10log 10Wnb to the

dBc/Hz reading at the peak of the line.

Because the main purpose of this function is a check on what sort of signal is actually in the Nyquist

band, it might be preferable to scale the spectrum to dBm/Hz or dBV2/Hz instead of scaling the frame

to power 1 and claiming that we are seeing dBc/Hz. Then, for example, if no signal were present, the

display would show the correct spectral density level of the noise.

IV. Medium-Band Processing

In this mode of processing, we assume that the sampled signal consists of a carrier with weak sidebands.

The purpose of the processing is to reduce the bandwidth of the signal by a modest amount (up to 128

with current parameters), remove the carrier, and measure properties of the sidebands.

A. z-Frame Production

The user having selected an FFT size Nfft and a decimation factor r, both powers of 2, define the frame

size Nxf = rNfft. In order to limit memory usage, the frame is divided into nbf adjacent batches of size

Nxb, a divisor of Nxf that is not more than some maximum batch size (currently 8192). One batch at a

time is processed. We use the first batch to measure the carrier frequency by a simple vector computation
called "Pony, Part 1" (Appendix A). Let 5 be the measured frequency in radians per sample, the sign of

5 being Spoh and let u = exp(-iS). Let x[n], n = 0,..., N×f - 1, be the A-D x-frame. A complex z-frame

z[m] of size Nzf < gift is computed by

zz[n] =x[nlu -n, n=O,...,Nxf-1 (2)
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nh--I

z[n]= ,,:O,...,N,f- 1 (31
k=O

where hr is a lowpass FIR filter designed for decimation by r (Appendix B). Its length nh is assumed to

be a multiple of r (currently 16r), and it follows that we can take Nzf = Nfft - nh/r + 1. The ripples of

the frequency response of hr above the decimated Nyquist frequency (Fig. 2) are low enough so that the

aliased image of the wrong side of the carrier at -5 barely appears above the 16-bit quantization noise
in a spectrum output with simulated data.

The computation in Eqs. (2) and (3) is carried out batch by batch, the z-frame being built up in nbf

steps by an overlap-add operation. The result is a complex representation of the carrier (at zero frequency

now) and sidebands within f_/(2r) of the carrier. Because frames are processed independently, it is all

right to lose A-D data between frames while carrying out further processing on completed z-frames.
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Fig. 2. Frequency response of the FIR filter for Iowpass decimation.

B. Signal Spectrum

The signal spectrum is obtained as a two-sided spectrum of the z-frame. First, the z-frame is scaled to

unit energy. Most of the energy is in the carrier, which is now at dc (zero frequency). To prevent this dc

energy from leaking into the rest of the spectrum, we get rid of most of it by removing a linear fit from

the frame. We call this kind of preconditioning operation a calibration. The specific example used here

can be defined on a general array y[0],-.., y[N - 1] as follows: Let M be an integer approximately equal
to N/6. Compute the centroid points

M-1
1

(to, Y0) : "_ Z (n, y[n]),
n=0

N-1
1

:
n=N-M

and pass a straight line co + cln through them. The calibrated array is given by y0[n] = y[n] - co - cln.
If y itself is a straight line, then Y0 = 0.

The choice of this particular operation (especially the N/6) for spectral preconditioning is admittedly

seat-of-the-pants engineering. Perhaps removing a conventional least-squares fit would do as well. To
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deal with time series modeled by processes that are possibly nonstationary but do have stationary first

or second increments, it is desirable to subtract some linear fit, not just the mean. This makes all frames

statistically identical, so that the average of the spectral estimates of J disjoint frames converges as

J --, co, just as in the theory of stationary-process spectral estimates.

The spectrum and frequency arrays are now given in terms of the calibrated array z0 by

r N_f-1 (-i27rnk_ 2

S_[k] = y,N_flU,.(y[k])l_ _ zo[n]uo[n;N_f,a]exp \ _ ]1

= f_ k
f[k] rNfft

where k = -Nfft/2 q- 1,..., Nfft/2. The squared magnitude of

,_-1 f -i27rn f _
Hr(f)= _hTtnlexp\ _ ]

n=0

is used for equalizing the spectrum against the lowpass decimation filter. As before, a plot of 10 log 10Sz [k]

is labeled dBc/Hz. Points corresponding to frequencies with absolute value below 4f_/(Nzfr) or above

95 percent of the Nyquist frequency 0.5f_/r are not displayed. The low cutoff hides doubtful values near

dc; the high cutoff hides a 3-dB rise at the Nyquist frequency caused by the combination of lowpass
decimation, noise folding at the Nyquist frequency, and equalization. The user chooses how many of

these frame spectra are averaged into a run spectrum. The resolution bandwidth is given by

fsNzf (4)
Wnb : r (Z: u0[n])_

C. Amplitude and Phase

Extraction of amplitude and phase residuals starts with a rectangular-to-polar operation on the
z-frame. The result is a complex "amplitude-phase" frame ap[n], n = 0,...,Nzf - 1, whose real part

is the amplitude of z[n] and whose imaginary part O[n] is the phase of z[n] wrapped into [-Tr, Ir]. The

amplitudes are replaced by their fractional deviations from the mean. The phases are unwrapped into

phase deviations ¢[n] (replacing O[n] in the ap array) by the following algorithm:

¢[0] = 0, _b[n] = ¢[n - 11 + mods (0[n] - O[n - 1], 2r), n = 1,..-, Nzf - 1

The symmetric residue function mods is defined by

mods(x, a) = x - a hint (x/a)
(5)

The correctness of this algorithm requires only that IA¢[n][ < 7r. The mods function also plays the central

role in the unwrapping algorithm described in Appendix C.
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The amplitude or phase residuals can be displayed as time series for the frame. Often, the phase
residuals are dominated by a ramp (a frequency offset), so that it is desirable to subtract a linear fit

to reveal the random fluctuations. This can be done with the calibration operation described above in
connection with spectral preconditioning.

For better or worse, amplitude and phase spectra are computed together by a single complex FFT

instead of two real FFTs. The real and imaginary parts of the ap[n] array are calibrated as above, tapered

by u0[n; Nzf, 4], and zero-padded to gift elements. Let AP[k], k = 0,..., Nfft -- 1 be the complex Fourier

transform of the resulting array. The transforms of the real amplitude and phase frames are given by

1 (AP[k] + AP[Nm - k]*),A[k] = -_ 1 (AP[k]- AP[Nm- k]*)• [k]= 5

for k = 0,..., gift/2, where AP[Nm] is defined to be AP[0]. The one-sided amplitude and phase spectra
for the frame are given by

r r

Sa[k] = f_Nzf IHr(f[k])l 2 IA[k]12' S¢[k] = fsN_f tHr(f[k])l 2 I¢[k]12 (6)

with frequency array f[k] = (fs/(rNfa))k. We apply the same low- and high-frequency cutoffs as we did

with the medium-band signal spectrum. The absence of a factor of 2 in the scaling factor of Eq. (6) [see

Eq. (1)] gives a single-sideband presentation of the spectra, so that they can be labeled dBc/Hz when

converted to dB. If a factor of 2 were present in the numerators, the unit for S¢ would have to be rad2/Hz.
As before, a number of frame spectra can be averaged into a run spectrum. The resolution bandwidth is
given by Eq. (4).

V. Narrow-Band Processing

This processing mode also assumes that the signal consists of a carrier with weak sidebands. Its

purpose is to achieve an arbitrarily large reduction in data rate, limited only by the user's patience. The

stream of A-D data is reduced to a sequence of average amplitude and phase residuals, the averaging
time being chosen by the user. The phase residuals from two channels can be combined into a differential

phase. These streams of band-reduced data can be processed into time series, spectra, or Allan deviations
(phase or differential phase only).

A. Amplitude and Phase Extraction

The stream of A-D data is divided into batches of size Yxb , which must be adjacent for the entire run.

There is a minimum and maximum batch size (now 200 and 8192). A frame consists of nbf batches, or

Yxf = nbfYxb A-D data, where nbf can be any positive integer. Each batch is reduced to one sample of

average amplitude and phase, and nbf batch samples are averaged to produce a frame sample. The user

has to choose gxb and nbf (with the bounds on Nxb enforced by the user interface) to achieve the desired

reduced sample rate f_/N×f. Unless there are phase tracking problems (see below), the results for a fixed
frame size should depend little on the number of batches per frame.

Let us represent the digitized signal by

x(t) = A(t) cos _(t)

where _(t) is the total phase, which one can think of as wt + _ + ¢(t), where ¢(t) is a phase residual.
The point is that ¢(t) is an intrinsic part of the signal (except for an unknowable additive constant
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27rno),whilew and _(t) trade off with each other. We assume that A(Q and _(t) satisfy two imprecisely

given conditions, called here the assumptions of small local variations: (1) Over a batch, the fractional

variations of A(t) from its mean are much less than 1, and (2) over at least two batches, the total phase

differs by much less than one radian from a first-degree polynomial fit (constant phase offset plus constant

frequency). Over longer time spans, the phase might deviate from a straight-line fit by many radians.

Let the batches of a run be indexed by k, k = 0, 1,--.. Batch k starts at time tk = kgxb/fs. For

the moment, let t run over the sequence of times tk + n/fs,n = 0,... ,Nxb -- 1, in batch k. The Pony

computation (Parts 1 and 2) of Appendix A is used to estimate the local frequency, amplitude, and phase

of the batch. It gives 5k (radians per cycle), Ak, and 0k such that

zCt) _ A_ cos (,_k.5(t- tk) + Ok) (7)

(The sign of 5k is taken to be the same as the polarity Spol.) Write &k = 5kfs. With the assumptions of

small local variations, it turns out that, to first order in these variations,

Ak _ Ak (8)

Ck := d;k(tk -- tk) + Ok _ _k (mod 27r) (9)

where tk, Ak, and (_k are the averages of t, A(t), and ¢(t) over batch k. It is important to note that the

approximation [Eq. (9)] of Ck to _k (mod 27r) is better than the approximation of the phase on the right

side of Eq. (7) to _(t) because the errors in 5k and Ok tend to compensate each other in just the right

way.

The average amplitude residual for batch k is computed by ak = ftk/flO -- 1. The computation of

phase residuals is more delicate. According to Eq. (9), _bk, to first order, is the average total phase of
the signal in batch k, modulo 27r. There are two problems. First, there is the 27r ambiguity. Second,

we would like to have a phase residual instead of the large total phase. Let us use the initial measured

frequency &0 and phase 00 to calibrate the total phase to a phase residual

$(t) = ¢(t) - _o (t - to) - Oo (10)

where t now runs over all time beyond the starting time to of the run. Note that q_(t) depends on the

calibration parameters &0, 00, so it is not intrinsic. Its average over batch k is

,_k= ck - _o (_k- to) - Oo (il)

These are the batch phase residuals that we would like to compute. From Eq. (9) it follows that, to first

order,

Ck "_ _bk - _bo (t-k -- to) -- O0 (mod 2r)

J¢o _-" 0 (mod 27r)

(12)

To a good approximation, then, we know the Ck, modulo 21r. Because of the assumption of small local
variations, we also can predict, with an error < 7r, how many radians the average total phase advances
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from one batch to the next, given its previous behavior. With this information, and with the measured _0
assumed to be 0, the 27r ambiguity can be removed sequentially from all the Ck by means of a second-order

unwrapping algorithm given in Appendix C. It is the same algorithm, with different parameters, that is

used for unwrapping the picket fence time-interval measurements that capture the 1-Hz zero crossings.

The algorithm also produces a sequence of prediction errors zk that satisfies [zk[ _< 7r. It measures how

much the current phase differs from what we think it should be, based on the behavior of the previous

batches. If any [zk[ exceeds a certain threshold, now set at _r/2, a caution is issued to the user. Perhaps

the frequency is changing so fast that the assumption of small variations fails for the batch length Nxb.
In effect, the analyzer may be losing phase lock, like a phase-locked loop whose bandwidth is too small.

If this happens, the user can try decreasing N×b. As mentioned above, the amplitude and phase residual
averages for a frame are obtained simply by averaging nbf batch values. Thus, if the user has to decrease

Nxb to keep the analyzer in lock, he can maintain his chosen averaging time by increasing nbf.

B. Differential Phase

By differential phase we mean some method of subtracting the phases of two channels that are being
sampled simultaneously at the same rate. There are two flavors of differential phase processing. In S-S

or X-X differential phase, it is assumed that both channels (1 and 2) originate at the same RF band and

are downconverted to the same frequency. In this case, the total phases should not be too far apart, and
so it makes sense to compute the batch averages

5¢k = Ck(1) - _k(2) - 27rn0

where (1) and (2) identify the two channels and no is the integer that makes -lr < 5_0 -< lr. Applying
Eq. (11) to both channels, we obtain

$_k = Ck(1) - ¢k(2) + (&0(1) - _o(2)) (Ek - to) + _0(1) - _o(2) - 2zrn0 (13)

which gives the intrinsic quantity/Sq>k in terms of measured quantities.

The original design of the analyzer included a sample-and-hold unit so that channels 1 and 2 could be

sampled simultaneously. This is no longer the case and, hence, the channel samples have to be interleaved

at total rate 2fs through the A-D converter: (1), (2), (1), (2), ..., where a channel 1 sample is paired with

the following channel 2 sample. To deal with this situation, we use current batch frequency estimates to

adjust the total phases of the two channels as if they were sampled halfway between the channel 1 sample

time and the channel 2 sample time. The phase advance of channel 1 over a delay 1/(4fs) is estimated

as rfvid(1)/(2fs), where fvid(1), the current estimate of the analog carrier frequency of channel 1, is

computed by fvid(1) -= fs(nbase(1) + 6k(1)/(2Zr)). A similar correction of opposite sign is applied to the
channel 2 total phase. Consequently, a correction

_r 1
(nbase(1) + nbase(2)) + _ (Dk(1)+ Dk(2))

has to be added to _k.

In S-X differential phase, channel 1 is downconverted from 2295 MHz (S-band), channel 2 from
8415 MHz (X-band), or the reverse, and we are required to produce some version of

3
S band phase - _-_ (X band phase)
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In a preliminary design, the analyzer simply computed the nonintrinsic quantity Ck(1) - (3/11)¢k(2),

which depends on the initial measured frequencies w0(i), i = 1,..., 2, and which, if a linear fit is not

removed, has a random ramp component that depends on these measured frequencies. The current

design uses a more objective method in which the measured frequencies are replaced by a priori known

design frequencies wo(i) = fsoo(i). These are computed from the user-provided analog offset frequencies

fofst(i) by wo(i) = 2r(/ofst(i) - fsnbase(i)). One can then produce phase residuals Ck(i) : Ck(i) + (&0(i)

-Wo(i))(tk -to) that start at zero but show ramps if the actual channel frequencies differ from the design

frequencies. S-X differential phase is now just Ck(1) - (3/11)¢k(2), which shows a ramp if the frequencies
of the S- and X-channels are not related in exactly the right way. In contrast with the S-S or X-X

situations, the first sample of this differential phase is zero; we are calibrating for frequency only and not

attempting to measure the absolute synchronization of the two channels.

As with amplitude and phase, the batch averages of differential phase are combined into frame averages.

C. Time Series

The stream of narrow-band samples (frame average amplitude residuals, phase residuals, or differential

phases) can be collected into a buffer and plotted against time. In the present software, we use a buffer

management scheme that automatically subsamples the buffer by a factor of 2 when it fills up, crunches it
to half its size, and begins to accept data at half the previous rate. At any time during the run, the buffer

contains a record of the entire data stream, subsampled by some power of 2. Because phase residuals

and differential phases are likely to be dominated by a straight line, we normally apply the calibration

operation described in Section V.B before plotting them so that random fluctuations can be seen.

D. Spectrum

Any of the streams of narrow-band samples can be subjected to the same spectral estimation process.
Because it takes longer to collect the data arrays, there is incentive to use the narrow-band data more

efficiently than the medium-band data. In compensation, there is more processor time available per

A-D sample for expensive postprocessing. We use an unweighted Thomson multitaper spectral estimator

[10,7 (Chapter 7)] with orthogonal data tapers (trig prolates) computed by the author [5] (Appendix B).
The user chooses a FFT size gift, a power of 2. At the start of the test, we compute an array of K

orthogonal data tapers uk[n; Nfft, w], n -- 0,..., Nfft - 1, k -- 0,..., K - 1. The value of K depends on w
and on the sidelobe level we wish to tolerate in the frequency responses of the uk. In the present design,

w = 4, g = 4. An array of samples x[0],..-,x[Yfft - 1], called a "narrow-band frame" (nbframe), is

preconditioned by the calibration operation of Section V.B. Then K distinct "eigenspectra" So,'-', SK-1

are computed by applying the tapers and a real FFT, giving

N×f Nm-I (-i27rnrn/Nfft) 2
Sk[Trt ] -- yfftfs n_=O x[r_]_tk[n; Yfft' w] exp

(14)

with frequency array fire] = (fs/(NxfYfft))m, m = O,...,Nfft/2. The spectrum of the nbframe is

computed by averaging the eigenspectra:

K-1

= Z s,4m] (is)
k=O

and the overall run spectrum is computed by accumulating and averaging all the nbframe spectra. One

advantage of this method is that, over smooth regions of the true spectrum, the variance of S[m] is about
K times smaller than the variance of each Sk [m]. With a single-taper method, variance could be reduced



byusingshorternbframes or averaging the spectrum over frequency. Either of these methods increases
the resolution bandwidth.

To prepare the spectrum for display, we cut off frequencies below (fs/(Yxfgift))w and do the usual
conversion to dBc/Hz. The resolution bandwidth Wnb is given by

1 1_ 1 1
Wnb K k=O Wnb,k

where

W b,k = Ysgift
(E uk[n])2

is the resolution bandwidth of Sk. Although it is not apparent, Wnb is proportional to 1/gift; one can
use Nif t to trade off resolution against run length.

The user should be aware that the spectral window of this method is not bell shaped but approximately
rectangular with ripples across the top. If the spectrum has a bright line whose width is of the order of

one FFT bin or less, the image of the line may appear to have four small peaks at the top. These are

artifact_of the method and do not indicate a splitting of the line. (See Appendix B and Fig. 3.)

In the current version of narrow-band processing, we have achieved bandwidth reduction by unweighted

averaging: The batch samples of amplitude and phase are, to first order, unweighted averages of these
quantities, and frame samples are unweighted averages of batch samples. Consequently, a calculated

--4 -2 0 2

FFTBIN

Fig. 3. Shape of a bright line for narrow-
band spectrum.
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spectrum for frequenciesbetween 0 and the Nyquist frequency f,/(2Nxf) isnot, strictlyspeaking, an

estimate ofthe spectrum ofthe quantityin that frequencyrange,but ratheran estimateof the spectrum

of the averagesof the quantityover an averagingtime _'0= Nxf/f,,sampled at rate l/T0.This spectrum

suffersfrom both aliasingand distortion.The Pony method of extractingbatch samples of amplitude

and phase leadsinherentlyto thissituationforframes consistingof one batch. The main decisionwas
how to deal with furtherbandwidth reduction:whether to use a lowpass decimation filter,a bank ofsuch

filters,or simply to extend the situationwith unweighted averaging.The advantages ofthe chosen design

are simplicity,consistency,and flexibilityin the choiceof decimation factor(frame length),which can be

largeenough to exhaust the patienceofany user.

E. Allan Deviation

The stability analyzer can compute the Allan deviation of frame samples of phase or differential phase

for an array of averaging times z that are powers of 2 times the frame duration r0. It was required to
remove an estimate of linear frequency drift from the results. For a drift estimator, we use the simple

three-point estimator suggested by Weiss [11]. Although the basic method is covered in [2] and [3], we

run through the computations for a particular value of _" = nTo. Let the stream of phase samples be

¢0, ¢1,'" ". At a given point in the run, we have accumulated sums of the first and second powers of m

second differences of ¢_ with stride n, namely,

m+l

j=2

p=l, 2

where m > 4. (The author realizes that the sum for p = 1 telescopes.)

subsampled version

We have also collected a

¢0, Cd,¢2d, •••, ¢id

of the whole run so far by the same buffer mechanism used for time series above. The calculations proceed

as follows:

Dc = ¢2nc - 2_c + ¢0 (unscaled drift estimate)

m
(sample variance)

V = V + - Dc -_
(drift correction)

u = (m - 1)(0.8776 + 0.0643e -(1�2)(m-a))
(degrees of freedom)
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= -- (Allan deviation with error bar)

The formula for degrees of freedom is an empirical formula fitted to the author's numerical results for the

random-walk-of-frequency model of phase deviations (f-4 noise). The error bars, which are really the

square roots of "one-sigma" error bars for a_(T), should be conservative for fZ noise, ]3 > -4.

Vl. Zero-Crossing Processing

To capture the up-crossing times of the 1-Hz square wave, a preliminary measurement of the nominal

period p of the square wave is taken with the interval timer, which is then set to measure the time

intervals between each subsequent up-crossing and the next pulse of a 10-Hz train of reference pulses,
the "picket fence." These readings are unwrapped into a sequence of time residuals, as described in

[4]. The algorithm, which is really the same as the one used for unwrapping the narrow-band phase

deviations (Appendix C), need not be reproduced here. The time deviations produced by this algorithm
are multiplied by the scale factor

27F_ref

fmixP

to give phase deviations that can be used like the batch averages of phase deviation that come from the

narrow-band process. For time series and Allan deviation, we allow only one batch per frame, as the
1-second period is natural for the user. For spectrum, an arbitrary number of batches per frame is allowed

so that users can shrink the Nyquist frequency below 0.5 Hz as much as they want.
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Appendix A

The Pony Calculation

This is a batch method for computing the frequency, amplitude, and phase of a sampled sine wave.

It comes from a method of harmonic analysis called Prony's method [6 (Chapter 11)], which analyzes

a waveform into the sum of n sine waves. The calculation we call "Pony" is simply a modification of

Prony's method for n = 1.

I. Part 1: Frequency

Let the data array be x[0],... ,x[N - 1]. If x[n] were exactly of form Acos (on + 0), then we would

have

x[n + 1] + x[n- 1] = (2 coso)x[n], n = 1,...,N - 2
(A-l)

On the other hand, if x[n] is a noisy cosine wave, then let us estimate cos o by projecting the vector

x[n + 1] + z[n - 1] orthogonally onto the vector x[n]. The computation is

N-3 1](1/2) (x[O]x[1]+ x[N - 2]x[N - lt) + E_=I x[nlx[n +
C --_ v--,N-2 r 12

Ln=l xtn]

o=arccos (c) in [0,_]

if [cI < 1, else o goes to the nearest port in the storm, 0 or 7r. One may also change the sign of o according

to polarity considerations.
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For use in Part 2 and elsewhere, a single-precision complex array of powers u n, n = 0,. •., N - 1,
where u = exp (-io), is generated by a vectorized algorithm that we illustrate for the case N = 16.

Compute the dyadic powers u2, u 4, u s in double precision and convert them to single precision. Lay down

the powers u °, u s in the array, multiply them by u4, and lay down the products to give u °, u4, u s, u 12.
Multiply by u 2 to give u °, u2,..., u 14. Multiply by u to give the desired array. For large N, the successive
steps get more and more efficient for a vector processor.

II. Part 2: Amplitude and Phase

Having estimated the frequency, we use it to estimate amplitude and phase. Let a = A cos 9, b = A sin 8,
and solve the least-squares problem

x[n] _ acos on - bsin on, n = O,...,N- 1

for the parameters a and b. The coefficients of the normal matrix can easily be expressed in closed form,
and the solution computed as follows:

N-1 N-I

xc = _ x[n] cos on, xs =- _ x[n]sin on (A-2)
n=0 n=0

11 i  si °N1cc= _ N+cos(o(N- s_no j 1[ 1))sin oN ]
ss= _ N-cos (o( N - s_n o j

1 1))s ics = _sin (o(N- n oN
sin o

D = CC'SS--CS 2

a
ss.xc +cS.Xs

D
b= cS.Xc+CC.X,

D

A = v_a2+ b2, 9 = angle(a + ib)

Most of the work is in the in-phase and quadrature mixing operation [Eq. (A-2)], which uses the array
un whose generation is described in Part 1.

The calculation given here can be regarded as an improvement on the approximations

2 2

a _ _xc, b _ -_xs

which are exact if oN is an integer. It has been observed [8] that these approximations are inadequate

if oN is not an integer, because the double-frequency terms have not entirely been eliminated by the
mixing-filtering operation, Eq. (A-2).
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Appendix B

Windows and Filter

The data tapers and lowpass decimation filter are based upon the author's "trig prolate" approxima-

tions [5] to the discrete prolate spheroidal sequences of Slepian [9]. The notation uk[n; N, w] is used here

in place of the notation uk [n; N, w/N, w] in [5].

Figure 1 shows the frequency responses (spectral windows) of the data tapers used for spectral estima-
tion. The _05 curve applies to full-band spectrum, i204 to medium-band spectra, and 124 to narrow-band

spectra. Note that f_4 is the average of the windows of the four eigenspectra, Eq. (14), that are averaged
into the total spectrum, Eq. (15). The expectation of a spectral estimate is the convolution of the true

spectrum with the spectral window. The 120_o windows are bell shaped. Figure 3 plots f_4 on a linear
scale against a two-sided frequency axis to show how a narrow bright line would appear in the spectral
estimate if it were plotted on a linear scale. The ripples at the top will not be so prominent on a typical

dB scale.

The N-point FIR lowpass filter used in medium-band processing before decimation by r is built in a

conventional way from the trig prolate window u0[n; N, w]. The formula for it is

hr[n]=uo[n;g,w]sinc 2rfh n $ ,
n=0,...,N-1

normalized so that _ hr[n] =- 1, where

0.4 sin x
, sinc x =

w-4, N=16r, fh -- r x

Figure 2 shows the frequency response of this filter for r = 2. The response is essentially the same for
all r if frequency is scaled according to the x-axis of Fig. 2. Only one table is needed to represent the

frequency response for the purpose of equalizing the medium-band spectra.
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Appendix C

Phase Unwrapping Algorithm

This algorithm produces the narrow-band phase residuals Ck from the carrier frequency and phase

estimates extracted from each batch by the Pony calculation. It is assumed that the batches all have

length Yxb and are adjacent. Recall the definition, Eq. (5), of the mods function. Let the damping

constant ), be a number between 0 and 1. In the following algorithm, _b_ is related to Ck of the main text

by ¢'k = Ck -- 50(Nxb 1)/2.

z0 ----0,¢0 = 0, q0 ----0

For k= 1,2,...

Obtain the batch frequency and phase 5k, #k.

_b_ = (ok -- o0)(Nxb -- 1)/2 + 0k ! _bk is total phase Ok mod 2_r.

zk = mods (¢_ - _b'k_l - 50Nxb -- qk-1, 2r) .Wprediction error.

If ]zk[ > r/2 (say), then issue caution "losing lock" to user.

Ck = ¢k-1 + qk-1 + zk ] output phase residual.

qk = qk-1 + Azk ! low pass-filtered ACk.

Next k.

Note that qk, zk satisfy

qk = (1-- A)qk-l + AACk, Zk = ACk --qk-1

This says that qk is a lowpass-filtered version of ACk, and zk is a prediction error for ACk. The basis of

the algorithm is (1) the assumption that [zkl < 7r and (2) the knowledge of zk modulo 27r, namely,

zk = Aff_k - daoAtk - qk-1 "_ A_bk -- o0Yxb -- qk-1 (mod 27r)

Any value for A in [0, 1] is meaningful. If 0 < A < 1, then, in effect, a weighted average of previous phase
advances, with weights (1 - A) n, is used to judge what the current phase advance should be. In the script

files that drive the software, A has been set to 1/10. This provides some stability against large errors

while maintaining the ability of the algorithm to follow frequency drifts.
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Errata

In "Adaptive Line Enhancers for Fast Acquisition" by H.-G. Yeh and T. M. Nguyen, which appeared in

The Telecommunications and Data Acquisition Progress Report 42-119, July-September 1994, November

15, 1994, the plot in Fig. 14 was incorrectly situated. The correct figure is provided below.
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Fig. 14. Magnitude of the input data to the ALE, ALEDF, AND ALECA.
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